Attracteurs - Prigogine - Stengers

De LERDA
Aller à : navigation, rechercher


Ilya Prigogine et Isabelle Stengers dans « Entre le temps et l’éternité » :



« Dans le passé, (…) tous les systèmes soumis à un attracteur semblaient devoir « se ressembler ».

Aujourd’hui, la notion d’attracteur symbolise au contraire la diversité qualitative des systèmes dissipatifs. La notion d’état attracteur renvoie en effet à celle de système dissipatif, producteur d’entropie.

Un pendule idéal, sans frottement, n’a pas d’état attracteur, mais poursuit indéfiniment son mouvement d’oscillation. En revanche, le mouvement d’un pendule réel s’amortit progressivement. Dans le cas du pendule simple, l’existence de l’attracteur que constitue son état d’équilibre (au sens mécanique) permet de caractériser tout mouvement pendulaire réel en toute généralité, sans avoir besoin de le connaître dans sa particularité. Quelles que soient la vitesse et la position initiale du pendule, nous savons en effet comment nous pourrons le décrire si nous attendons assez longtemps : il finira par se trouver au repos dans sa position d’équilibre. De même, l’existence de l’attracteur que constitue l’état d’équilibre thermodynamique permet d’affirmer qu’une population de milliards de milliards de particules dans une enceinte isolée évoluera vers un état dont la description ne dépend plus que d’un petit nombre de paramètres observables, tels que température et pression.

Pour nous représenter l’attracteur, introduisons un espace dans lequel cet attracteur est plongé. Cet espace possèdera autant de dimensions qu’il faut de variables pour décrire l’évolution temporelle du système.

Les états d’équilibre des systèmes dissipatifs correspondent par définition à des attracteurs ponctuels, représentés par un point de cet espace. C’est également le cas pour les systèmes proches de l’équilibre thermodynamique et soumis au théorème de production d’entropie minimum. Dans tous les cas, quelle que soit la préparation initiale du système, l’évolution de celui-ci sous des conditions aux limites données – pourra être représenté par une trajectoire menant du point représentant l’état initial vers le point attracteur. Celui-ci domine donc la totalité de l’espace. Tous les systèmes représentés par les mêmes variables indépendantes aux mêmes conditions aux limites « reviennent au même », connaissent le même destin.

La découverte loin de l’équilibre des comportements cohérents, telle l’ « horloge chimique », avec sa période temporelle bien déterminée, implique un premier élargissement de la notion d’attracteur. Ici, il ne s’agit plus d’un point mais d’une ligne. Cette fois, quelle que soit la situation initiale, le système évolue vers un « cycle limite ». Un système caractérisé par un cycle limite reste un système prévisible, que l’on peut décrire de manière simple. (…)

  • Jusqu’à ces dernières années, on croyait que les seuls attracteurs possibles correspondaient à des variétés continues, telles que lignes, surfaces et volumes. Mais la découverte des « attracteurs étranges » a ouvert des nouvelles. Les attracteurs étranges ne sont pas caractérisés par des dimensions entières, comme une ligne ou une surface, mais par des dimensions fractionnaires. Ce sont ce que, depuis Mandelbrot, on appelle des variétés fractales. (…)
  • Jusqu’à il y a peu, l’existence d’un attracteur avait été synonyme de stabilité et de reproductibilité : retour au « même » malgré les perturbations, quelles que soient les particularités initiales. Aux nouveaux types d’attracteurs correspondent des comportements « sensibles aux conditions initiales » qui font perdre son sens à la notion de « même ». Dans toute région, aussi petite soit-elle, occupée par l’attracteur fractal, passent autant de trajectoires que l’on veut, et chacune de ces trajectoires connaît un destin différent des autres. En conséquence, des situations initiales aussi voisines que l’on veut peuvent engendrer des évolutions divergentes. La moindre différence, la moindre perturbation, loin d’être rendue insignifiante par l’existence de l’attracteur, a donc des conséquences considérables. (…)

Nous arrivons ici à la définition du comportement « chaotique », qui est un comportement typique des systèmes caractérisés par un attracteur étrange. Un comportement est chaotique si des trajectoires issues de points, aussi voisins que l’on veut dans l’espace des phases, s’éloignent les unes des autres au cours du temps de manière exponentielle ; la distance entre deux points quelconques appartenant à de telles trajectoires croit proportionnellement à une fonction exponentielle de l’inverse du temps de Lyapounov. Le temps de Lyapounov permet de définir une véritable « échelle de temps ».


Ilya Prigogine et Isabelle Stengers dans « La nouvelle alliance » :



« Une notion cruciale est la notion d’attracteur. Les exemples d’attracteurs sont innombrables et bien connus de la physique. Le pendule, qui s’immobilise progressivement, rejoint son état attracteur. Le liquide chaud dont la température rejoint progressivement celle de l’environnement gagne son état attracteur. (…)

Nous avons vu que, près de l’équilibre, l’état stationnaire correspond (….) à un état attracteur essentiellement analogue à l’état d’équilibre. Mais, loin de l’équilibre, d’autres types d’attracteurs peuvent apparaître, et notamment le « cycle limite », correspondant à un comportement temporel périodique adopté de manière spontanée par le système. (…)

Depuis, de nouveaux types d’attracteurs ont été découverts qui enrichissent la dialectique du régulier et de l’aléatoire. (…) Ces attracteurs ne correspondent pas à un point, comme l’état d’équilibre, ou à une ligne, comme le cycle limite, mais à un ensemble dense de points, un ensemble assez dense pour que l’on puisse trouver de ces points dans toute région, aussi petite soit-elle. Il s’agit d’un ensemble auquel peut être attribué une dimension « fractale ». Les attracteurs de ce type impliquent, de la part du système qu’ils caractérisent, un comportement de type chaotique. Attracteur et stabilité cessent ici d’aller de pair.

David Ruelle a caractérisé ces « attracteurs étranges », qu’on a également appelés « attracteurs fractals », par leur très grande sensibilité aux conditions initiales. Ce qui signifie que l’état attracteur ne se caractérise plus du tout par son insensibilité à de petites variations de ses paramètres. Toute petite variation est susceptible d’entraîner des effets sans mesure, de déporter le système d’un état à un autre très différent. (…) L’opposition entre déterminisme et aléatoire est battue en brèche. (…)

C’est désormais autour des thèmes de la stabilité et de l’instabilité que s’organisent nos descriptions du monde, et non autour de l’opposition entre hasard et nécessité. »